CONTENTS

Preface ix
About the Editors x
Contributors xvii

Part I. Historical Perspective 1

1 The History of Laryngology
 Collin S. Karmody 3

Part II. Basic Sciences 17

2 Evolution of the Human Larynx: Nature's Great Experiment
 Jeffrey T. Laitman and Joy S. Reidenberg 19

3 Laryngeal Development
 David H. Henick and John A. Tucker 39

4 The Pediatric Larynx
 John P. Bent, Ronda E. Alexander, and Roland D. Eavey 73

5 Adult Laryngeal Anatomy
 Marvin P. Fried, Samuel M. Meller, and Alessandra Rinaldo 85

6 Laryngeal Physiology
 Clarence T. Sasaki, Jagdeep Hundal, and Douglas A. Ross 101

Part III. Diagnosis 113

7 Patient History
 Robert Thayer Sataloff, Mary J. Hawksbaw, and Joseph Anticaglia 115

8 Physical Examination
 Robert Thayer Sataloff 135

9 Videolaryngoscopy and Laryngeal Photography
 Eiji Yanagisawa and Ken Yanagisawa 149
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>History and Physical Examination of the Child with a Voice Disorder</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>Roger C. Nuss</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Laryngeal Imaging: Stroboscopy, High-Speed Digital Imaging, and Kymography</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>Diane M. Bless, Rita R. Patel, and Nadine Connor</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Laryngeal Electromyography: Principles, Applications, Problems</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Lucian Sulica and Andrew Blitzer</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Electroglostography/Electrolaryngography</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>David M. Howard</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>The Phonetogram: Measurement and Interpretation</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Harm K. Schutte</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Videokymography (VKG)</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Jan G. Švec, František Šram, and Harm K. Schutte</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Diagnostic Imaging of the Larynx</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>Ian J. Witterick, Edward E. Kassel, and Arnold M. Noyek</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Virtual Laryngoscopy</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td>Natalie P. Higgins, Richard V. Smith, and Marvin P. Fried</td>
<td></td>
</tr>
</tbody>
</table>

Part IV. Anesthesia

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Anesthetic Principles of Airway Management</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>Allan C. D. Brown</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Anesthesia for Office-Based Laryngology</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td>Seth H. Dailey</td>
<td></td>
</tr>
</tbody>
</table>

Part V. Pediatric Laryngology

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Evaluation of the Pediatric Larynx</td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>Ellen M. Friedman and Tulio A. Valdez</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Evaluation of the Child in Respiratory Distress</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>Tulio A. Valdez and Ellen M. Friedman</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Pediatric Voice Disorders</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>Mark E. Boseley, Christopher J. Hartnick, and Shirley Gberston</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Speech and Language Development in the Child</td>
<td>429</td>
</tr>
<tr>
<td></td>
<td>Robert J. Ruben</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Congenital Abnormalities of the Larynx</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>Sanjay R. Parikh, Thomas J. Ow, and Trevor J. McGill</td>
<td></td>
</tr>
</tbody>
</table>
Infectious Diseases of the Pediatric Airway
David H. Darrow, Jaime M. Eaglin, and Lauren D. Holinger

Pediatric Vocal Fold Immobility
Tulio A. Valdez and Ellen M. Friedman

Glottic and Subglottic Stenosis
Dana M. Thompson, Michael J. Rutter, and Robin T. Cotton

Extraesophageal Manifestations of Pediatric Gastroesophageal Reflux
D. J. Trigg and Kristina W. Rosbe

Acquired Diseases of the Pediatric Larynx
Frank L. Rimell

Foreign Bodies in the Pediatric Airway
David Albert

Pediatric Recurrent Respiratory Papillomatosis
Bettie M. Steinberg and Mark Shikowitz

Perspectives on the Pediatric Larynx with Tracheotomy
Suzanne S. Abraham

Neoplasms of the Pediatric Larynx
Robert F. Ward and Eli Grunstein

Part VI. Voice

Neurologic and Neuromuscular Diseases of the Larynx
Lucian Sulica and Marvin P. Fried

Spasmodic Dysphonia: Evaluation and Management
Jerome S. Schwartz and Andrew Blitzer

Vocal Aberrations in Dysarthria
Grete A. Fries, Dilip D. Madnani, Thomas J. Ow, and Rhonda E. Alexander

Rehabilitation of the Immobile Vocal Fold
David E. Vokes and Roger L. Crumley

Nonsurgical Voice Rehabilitation
Linda M. Carroll

Management of Vocal Pathology in the Voice Professional: Introduction and Overview
Robert Thayer Sataloff

Thyroplasty: Indications, Techniques, Outcome
Charles N. Ford
Part VII. Inflammatory and Infectious Disorders 805

43 Laryngeal Infections 807
 Kenneth W. Altman and Stanley M. Shapshay

44 Inflammatory Diseases of the Larynx 829
 Michiel J. Bové, Priya Krishna, Robert Lebovics, H. Bryan Neel III,
 and Clark A. Rosen

45 Laryngeal Manifestations of Acquired Immunodeficiency Syndrome 853
 Theresa A. Gurney, Kelvin C. Lee, and Andrew H. Murr

46 Immunologic Disorders of the Larynx 869
 Gabriele S. de Vos and David L. Rosenstreich

47 Tracheotomy 893
 Bradley A. Schiff and Craig Litman

Index 907
CONTRIBUTORS TO VOLUME I

Suzanne S. Abraham, BS, MS, PhD
Associate Professor
Department of Otolaryngology-Head and Neck Surgery
Department of Radiology
Albert Einstein College of Medicine
Montefiore Medical Center
Bronx, New York
Chapter 32

David Albert, FRCS
Paediatric Otolaryngologist
London, United Kingdom
Chapter 30

Ronda E. Alexander, MD
Assistant Professor
Department of Otorhinolaryngology-Head & Neck Surgery
University of Texas Health Science Center at Houston
Houston, Texas
Chapters 4 and 36

Kenneth W. Altman MD, PhD, FACS
Associate Professor
Department of Otolaryngology
The Mount Sinai Medical Center
New York, New York
Chapter 43

Joseph Anticaglia, MD
American Institute for Voice and Ear Research
Philadelphia, Pennsylvania
Chapter 7

John P. Bent, MD
Associate Professor, Departments of
Otolaryngology-Head and Neck Surgery
and Pediatrics
Children's Hospital at Montefiore
Albert Einstein College of Medicine
Bronx, New York
Chapter 4

Diane M. Bless, PhD, FASLHA
Professor Emeritus
Department of Surgery Division of Otolaryngology
Department of Communicative Disorders
University of Wisconsin
Madison, Wisconsin
Chapter 11

Andrew Blitzer, MD, DDS
Director, New York Center for Voice and Swallowing Disorders at St. Luke's-Roosevelt Hospital and the Head and Neck Surgical Group;
Professor of Clinical Otolaryngology
College of Physicians and Surgeons of Columbia University
New York, New York
Chapters 12 and 35

Mark E. Boseley, MD, MS
Assistant Professor of Surgery,
The Uniformed Services University of the Health Sciences,
Washington, DC
Clinical Appointment,
Children’s Hospital and Regional Medical Center
Seattle, Washington
Chief of Pediatric Otolaryngology,
Madigan Army Medical Center
Tacoma, Washington
Chapter 22

Michiel J. Bové, MD
Assistant Professor of Otolaryngology
Northwestern University Feinberg School of
Medicine
Chicago, Illinois
Chapter 44

Allan C. D. Brown
Professor Emeritus
Departments of Anesthesiology and
Otorhinolaryngology, Head and Neck Surgery
University of Michigan
Ann Arbor, Michigan
Chapter 18

Linda M. Carroll, PhD, CCC-SLP
Private Practice
New York, New York
Chapter 38

Nadine Connor, PhD
Assistant Professor
Departments of Communicative Disorders and
Surgery
University of Wisconsin-Madison
Madison, Wisconsin
Chapter 11

Robin T. Cotton, MD
Professor
Department of Otolaryngology-Head and Neck
Surgery
University of Cincinnati College of Medicine
Director,
Pediatric Otolaryngology Head and Neck Surgery
Cincinnati Children’s Hospital
Cincinnati, Ohio
Chapter 27

Roger L. Crumley, MD, MBA
Professor and Chair, Emeritus
Department of Otolaryngology-Head and Neck
Surgery
University of California, Irvine

President, American Laryngological Association
2008-2009
Irvine, California
Chapter 37

Seth H. Dailey, MD
Assistant Professor
University of Wisconsin School of Medicine and
Public Health
Department of Surgery
Division of Otolaryngology-Head and Neck
Surgery
Madison, Wisconsin
Chapter 19

David H. Darrow, MD, DDS
Professor of Otolaryngology and Pediatrics
Eastern Virginia Medical School
Attending Physician
Children’s Hospital of the King’s Daughters
Norfolk, Virginia
Chapter 25

Gabriele S. de Vos, MD
Division of Allergy and Immunology
Department of Medicine
Albert Einstein College of Medicine
Jacobi Medical Center
Bronx, New York
Chapter 46

Kate DeVore, MA, CCC-SLP
Owner
Total Voice, Inc.
Chicago, Illinois
Chapter 41

Jaime M. Eaglin, MD
Resident
Department of Otolaryngology
Medical College of Virginia
Richmond, Virginia
Chapter 25

Roland D. Eavey, MD
Professor of Otolaryngology and Laryngology
Harvard Medical School
Director, Pediatric Otolaryngology Service
Massachusetts Eye and Ear Infirmary
Boston, Massachusetts
Chapter 4
Charles N. Ford, MD, FACS
Otolaryngology Division, Department of Surgery
University of Wisconsin School of Medicine and Public Health
Madison, Wisconsin
Chapter 40

Marvin P. Fried, MD, FACS
Professor and University Chairman
Department of Otolaryngology-Head and Neck Surgery
Montefiore Medical Center
Albert Einstein College of Medicine
Bronx, New York
Chapters 5, 17, and 34

Ellen M. Friedman, MD
Professor and Chief
Service Texas Children’s Hospital
Bobby Alford Chair in Pediatric Otolaryngology
Baylor College of Medicine
Houston, Texas
Chapters 20, 21, and 26

Grete A. Fries MS, CCC-SLP
Department of Otorhinolaryngology-Head and Neck Surgery
Montefiore Medical Center
Bronx, New York
Chapter 36

Shirley Gherston, MA, CCC-SLP
Speech-Language Pathologist
Voice Specialist
Massachusetts Eye and Ear Infirmary
Voicewize
Boston, Massachusetts
Chapter 22

Eli Grunstein, MD
Assistant Professor
Department of Otolaryngology-Head and Neck Surgery
Assistant Director, Division of Pediatric Otolaryngology
Columbia University Medical Center
New York, New York
Chapter 33

Theresa A. Gurney, MD
Department of Otolaryngology-Head and Neck Surgery
University of California, San Francisco
San Francisco, California
Chapter 45

Christopher J. Hartnick, MD, MS
Associate Professor
Department of Otology and Laryngology
Massachusetts Eye and Ear Infirmary
Harvard Medical School
Boston, Massachusetts
Chapter 22

Pamela Lynn Harvey, MA, CCC-SLP
Director, Voice Pathology Services
Division of Otolaryngology
Brigham and Women’s Hospital
Boston, Massachusetts
Chapter 41

Mary J. Hawkshaw, RN, BSN, CORLN
Research Associate Professor
Department of Otolaryngology-Head and Neck Surgery
Drexel University College of Medicine
Executive Director
American Institute for Voice and Ear Research
Philadelphia, Pennsylvania
Chapter 7

David H. Henick, MD, FACS
Englewood Hospital Medical Center
Englewood, New Jersey
Hackensack University Medical Center
Hackensack, New Jersey
Montefiore Medical Center
Bronx, New York
Chapter 3

Reinhardt J. Heuer, PhD
Professor
Department of Communication Science and Disorders
College of Health Professionals
Temple University
Senior Researcher
American Institute for Voice and Ear Research
Philadelphia, Pennsylvania
Chapter 42

Natalie P. Higgins, MD
Aesthetic and Cosmetic Facial Plastic Surgery
New England Plastic Surgery & Aesthetics
Worcester, Massachusetts
Chapter 17

Lauren D. Holinger, M.D., FACS
Head of Pediatric Otolaryngology
Children’s Memorial Hospital
Professor,
Department of Otolaryngology, Head and Neck Surgery
Northwestern University Feinberg School of Medicine
Chicago, Illinois
Chapter 25

David M. Howard
Audio Lab, Intelligent Systems Research Group
Department of Electronics
University of York
Heslington, York
United Kingdom
Chapter 13

Jagdeep Hundal, MD
Chief Resident
Section of Otolaryngology
Yale University School of Medicine
New Haven, Connecticut
Chapter 6

Collin S. Karmody, MD, FRCSE
Professor Emeritus
Department of Otolaryngology
Tufts University School of Medicine
Boston, Massachusetts
Chapter 1

Edward E. Kassel, DDS, MD, FRCPC
Associate Professor
Department of Medical Imaging
University of Toronto
Toronto, Ontario
Canada
Chapter 16

Priya Krishna, MD
Assistant Professor
University of Pittsburgh Voice Center
Division of Laryngology
Department of Laryngology
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania
Chapter 44

Jeffrey T. Laitman, PhD
Distinguished Professor,
Professor and Director of Anatomy and Functional Morphology,
Professor of Otolaryngology,
Professor of Medical Education,
Mount Sinai School of Medicine;
Professor of Anthropology,
Graduate Faculty of Anthropology of The City University of New York;
Research Associate in Anthropology,
The American Museum of Natural History
New York, New York
Chapter 2

Robert Lebovics, MD
Surgical Consultant
National Institutes of Health
Bethesda MD
Chapter 44

Kelvin C. Lee, MD (deceased)
Associate Professor
Department of Otolaryngology-Head and Neck Surgery
New York University School of Medicine
New York, New York
Chapter 45

Steven H. Levy, MD
Psychiatrist
Wynnewood, Pennsylvania
Chapter 42

Craig Litman, MD
Attending Physician
Mather and St. Charles Hospital
Port Jefferson, New York
Chapter 47

Dilip D. Madnani, MD
Southwest ENT Head & Neck Surgery
Carlsbad, New Mexico
Chapter 36

Trevor J. McGill, MD
Professor of Otolaryngology
Harvard Medical School
Clinical Director, Dept. of Otolaryngology
Children’s Hospital
Boston, Massachusetts

Chapter 24

Samuel M. Meller, AB, DMD, DMSc
Private Practice
Orthodontics
Fleurier, Switzerland

Chapter 5

Andrew H. Murr, MD, FACS
Professor of Otolaryngology-Head and Neck Surgery
Roger Boles, M.D. Endowed Chair in Otolaryngology Education
University of California, San Francisco
Chief of Service
San Francisco General Hospital
San Francisco, California

Chapter 45

H. Bryan Neel III, MD, PhD
Professor and Chairman Emeritus
Department of Otolaryngology-HNS
Mayo Clinic College of Medicine
Rochester, Minnesota

Chapter 44

Arnold M. Noyek, MD, FRCSC, FACS
Professor of Otolaryngology-Head & Neck Surgery, Public Health Sciences and Medical Imaging
Department of Otolaryngology-Head & Neck Surgery
University of Toronto
Toronto, Canada

Chapter 16

Roger C. Nuss, MD, FACS
Department of Otolaryngology and Communication Enhancement
Children’s Hospital
Assistant Professor of Otolaryngology, Harvard Medical School
Associate in Otolaryngology, Children’s Hospital
Boston, Massachusetts

Chapter 10

Thomas J. Ow, MD
Department of Otorhinolaryngology-Head and Neck Surgery

Albert Einstein College of Medicine
Bronx, New York

Chapters 24 and 36

Sanjay R. Parikh, MD, FACS
Associate Professor
Departments of Otorhinolaryngology-Head and Neck Surgery and Pediatrics
Albert Einstein College of Medicine
Bronx, New York

Chapter 24

Rita R. Patel, PhD, CCC-SLP
Senior Clinical Speech-Language Pathologist
University of Wisconsin Madison, Voice and Swallow Clinic
Madison, Wisconsin

Chapter 11

Joy S. Reidenberg, PhD
Associate Professor, Center for Anatomy and Functional Morphology,
Associate Professor of Medical Education,
Mount Sinai School of Medicine
Research Collaborator, Department of Systematic Biology, Vertebrate Zoology Section, Division of Mammals, National Museum of Natural History
Guest Investigator, Department of Biology, Woods Hole Oceanographic Institution
New York, New York

Chapter 2

Frank L. Rimell, MS, MD
Pediatric Otolaryngologist
Department of Otolaryngology
University of Minnesota
Minneapolis, Minnesota

Chapter 29

Alessandra Rinaldo, MD, FRCSI ad eundem, FACS
Clinical Professor of Otolaryngology
Department of Surgical Sciences
ENT Clinic
University of Udine School of Medicine
Udine, Italy

Chapter 5
Kristina W. Rosbe, MD
Assistant Professor of Clinical Otolaryngology
Director, Division of Pediatric Otolaryngology
University of California, San Francisco
San Francisco, California
Chapter 28

Clark A. Rosen, MD, FACS
Director
University of Pittsburgh Voice Center
Associate Professor of Otolaryngology
University of Pittsburgh School of Medicine
Associate Professor of Communication Science and Disorders,
University of Pittsburgh School of Health and Rehabilitation Sciences
Pittsburgh, Pennsylvania
Chapter 44

Deborah Caputo Rosen, RN, PhD
Private Practice, Medical Psychology
Bryn Mawr, Pennsylvania
Chapter 42

David Rosenstreich, MD
Division of Allergy and Immunology
Department of Medicine
Albert Einstein College of Medicine and Montefiore Medical Center
Bronx, New York
Chapter 46

Douglas A. Ross, MD
Professor, Vice Chief
Section of Otolaryngology
Yale University School of Medicine
New Haven, Connecticut
Chapter 6

Robert J. Ruben, MD, FACS, FAAP
Distinguished University Professor
Department of Otorhinolaryngology-Head and Neck Surgery
Albert Einstein College of Medicine
Montefiore Medical Center
Bronx, New York
Chapter 23

Michael J. Rutter, MD, FRACS
Associate Professor

Department of Otolaryngology-Head and Neck Surgery
University of Cincinnati College of Medicine
Division of Pediatric Otolaryngology-Head and Neck Surgery
Cincinnati Children’s Hospital Medical Center
Cincinnati, Ohio
Chapter 27

Clarence T. Sasaki, MD
The Charles W. Ohse Professor
Chief Section of Otolaryngology
Director Head and Neck Unit
Yale Comprehensive Cancer Center
Yale University School of Medicine
New Haven, Connecticut
Chapter 6

Robert Thayer Sataloff, MD, DMA
Professor and Chairman
Department of Otorhinolaryngology-Head & Neck Surgery
Associate Dean for Clinical Academic Specialties
Drexel University College of Medicine
Philadelphia, Pennsylvania
Chapters 7, 8, 39, and 42

Bradley A. Schiff, MD
Department of Otorhinolaryngology-Head and Neck Surgery
Albert Einstein College of Medicine
Montefiore Medical Center
Bronx, New York
Chapter 47

Harm K. Schutte
Groningen Voice Research Lab
Groningen, The Netherlands
Chapters 14 and 15

Jerome S. Schwartz, MD
The Feldman ENT Group, PC.
Volunteer Clinical Faculty Otolaryngology
Georgetown University Hospital
Washington, DC
Chapter 35

Stanley M. Shapshay MD, FACS
Professor
Division of Otolaryngology-Head and Neck Surgery
Albany Medical College
Albany, New York
Chapter 43

Mark Shikowitz, MD
Professor and Vice Chairman
Long Island Jewish Medical Center
Department of Otolaryngology and Communicative Disorders
Hearing and Speech Center
New Hyde Park, New York
The Albert Einstein School of Medicine
Bronx, New York
Chapter 31

Richard V. Smith, MD, FACS
Associate Professor and Vice-Chair
Department of Otorhinolaryngology-Head and Neck Surgery
Albert Einstein College of Medicine
Director, Head and Neck Service
Montefiore Medical Center
Bronx, New York
Chapter 17

František Šram, MD
Medical Healthcom, Ltd.
Department of Phoniatrics
Prague, the Czech Republic
Chapter 15

Bettie M. Steinberg, PhD
Chief Scientific Officer,
The Feinstein Institute for Medical Research
Dean, Elmezzi Graduate School of Molecular Medicine
North Shore-LIJ Health System
Manhasset, New York
and
Chief, Division of Otolaryngology Research
Hearing and Speech Center
Long Island Jewish Medical Center
New Hyde Park, New York
Chapter 31

Lucian Sulica, MD
Associate Professor
Director, Voice Disorders/Laryngology
Department of Otolaryngology
Weill Cornell Medical College
New York, New York
Chapters 12 and 34

Jan G. Švec, PhD
Palacký University Olomouc
Department of Experimental Physics
Laboratory of Biophysics
Olomouc, the Czech Republic
and
Medical Healthcom, Ltd.
Phonistic Department
Prague, the Czech Republic
Chapter 15

Dana M. Thompson, MD, MS, FACS
Chair, Division of Pediatric Otolaryngology
Mayo Clinic and Mayo Eugenio Litta Children’s Hospital
Associate Professor of Otolaryngology
Mayo Clinic College of Medicine
Rochester, Minnesota
Chapter 27

D. J. Trigg, MD
Pediatric Otolaryngolist
Peyton Manning Children’s Hospital at St. Vincents
Indianapolis, Indiana
Chapter 28

John A. Tucker, MD
Clinical Professor,
Department of Otorhinolaryngology-Head and Neck Surgery
University of Pennsylvania School of Medicine
Clinical Professor,
Department of ORL-HNS
Drexel University College of Medicine
Philadelphia, Pennsylvania
Chapter 3

Tulio A. Valdez, MD
Assistant Professor
Baylor College of Medicine
Department of Pediatric Otolaryngology
Texas Children’s Hospital
Houston, Texas
Chapters 20, 21, and 26

David E. Vokes, MBChB, FRACS
Consultant Otolaryngologist, Head and Neck Surgery
Auckland City Hospital
Auckland, New Zealand
Chapter 37
Robert F. Ward, MD, FACS
Professor of Otolaryngology
Department of Otorhinolaryngology
Weill Medical College of Cornell University
New York, New York
Chapter 33

Ian J. Witterick, MD, MSc, FRCSC
Associate Professor and Vice Chair
Director of Postgraduate Education
Dept. of Otolaryngology-Head & Neck Surgery
University of Toronto
Toronto, Ontario
Canada
Chapter 16

Eiji Yanagisawa, MD, FACS
Clinical Professor of Otolaryngology
Yale University School of Medicine
New Haven, Connecticut
Chapter 9

Ken Yanagisawa, MD, FACS
Clinical Assistant Professor of Otolaryngology
Yale University School of Medicine
New Haven, Connecticut
Chapter 9
laryngeal position in newborns and young infants. This arrangement prevents the mixing of ingested food and inhaled air, thereby enabling the baby to breathe and swallow liquids almost simultaneously in a manner similar to that of monkeys. Thus, the baby can breathe through the nose with only minimal, if any, cessations as liquid flows from the oral cavity around the larynx into the esophagus (Fig 2–4A). Because of this high laryngeal position, newborns are essentially, if not obligatorily, nose breathers. Indeed, studies of infants that have had deviation of the epiglottis/larynx due to ankyloglossia, and thus an anterior displacement of the larynx dislodging it from the palate and nasopharynx, demonstrated both suckling difficulties and unstable and low arterial oxygen percent saturation levels (SaO₂). Correction of the ankyloglossia allowed the larynx to regain its normal position with epiglottic/palatal overlap in the nasopharynx with concomitant improvement of deficits. As with nonhuman primates, the connection between the epiglottis and the soft palate is usually constant, but may be interrupted during the swallowing of a particularly large or dense bolus of food or liquid, during vocalization or crying, or because of disease as noted above.

Although the high position of the larynx in a human newborn or young infant effectuates the

Fig 2–4. Drawings depicting: A. the aerodigestive tract of a newborn human during suckling and B. the aerodigestive region in an adult human. Green arrows = respiratory route, blue arrows = digestive route. Note that the high laryngeal position in the infant effectuates largely distinct pathways whereas the lowered position of the larynx and tongue in the adult mandates the crossing of pathways.
respiratory and upper digestive maladies probably evolved along with our laryngeal shifts.6,60,62–63

What force or forces could have caused this change? Although the answer is probably a matrix of factors, the prime generator may be based in our ancestor’s need to feed the respiratory system’s requirement for increased air intake and oxygen. Such need could have been instigated by a series of evolutionary events that seminally affected our ancestors at this time. Prominent among these would have been the marked increase in brain size and—arguably complexity—with early members of Homo82,83 that concomitantly could have increased oxygen demands on the system. Increased brain size may also have structurally affected the cranial base, arguably causing internal flexion affecting laryngeal position. In addition, the necessity of short burst, or endurance, running on the African savannas to escape fast predators or chase equally fast prey may have become increasingly important. Indeed, recent studies have suggested that the human body plan is specifically designed to maximize endurance running, and that this ability likely evolved at this time as well.84 Rather than redesign our nasal complex in order to capture additional oxygen—evolution could have endowed us with
Figure 3–23 shows the Carnegie stage 19 embryo. The laryngeal cecum, which originates as a triangular lumen extending along the ventral aspect of the arytenoid swellings, continues its caudal descent until it reaches the level of the glottic region. The epithelial lamina completely separates the ventral laryngeal cecum from the dorsal pharyngoglottic duct.

Stage 20

The embryo is approximately 51 days of age and 18 to 22 mm in length. The cartilaginous hyoid is visible below the epiglottis. Perichondrial development (appositional growth) is evident. Cartilaginous appositional growth also represents a shifting of the embryonic center from interstitial to appositional growth (Figs 3–24 and 3–25).

Stage 21

The embryo is approximately 52 days of age and 22 to 44 mm in length. The thyroid gland is identifiable, inferolateral to the cricoid cartilage (Fig 3–26). The coronal section through the laryngeal region demonstrates the triangular appearance of the infraglottic lumen (Fig 3–27). The epithelial lamina completely separates the laryngeal cecum from the infraglottic lumen.

Stage 22

The embryo is approximately 54 days of age and 23 to 28 mm in length. Maturation of the anlagen of the intrinsic and extrinsic muscular tissue as well as the laryngeal cartilages continues.
Arytenoid facets are well defined, smooth, and symmetrical. Each arytenoid articulates with an elliptical facet on the posterior superior margin of the cricoid ring. The cricoid facet is approximately 6 mm long and has a cylindrical shape. Most cricoarytenoid motion is rocking; however, along the long axis of the cricoid facet, gliding also occurs. The cricoarytenoid joint is an arthrodial joint, supported by a capsule lined with synovium and supported posteriorly by the cricoarytenoid ligament. The cricoarytenoid joint controls abduction and adduction of the true vocal folds, thereby facilitating respiration, phonation and protection of the airway.

Fig 3–44. Tucker Fetal Collection (20 weeks). Membranous anterior commissure of the vocal fold.

Fig 3–45. Tucker Fetal Collection (5 months). High power view of the epithelium of the anterior vocal fold with first seen squamous epithelium.

Fig 3–46. Tucker Fetal Collection (5 months). High power view of the posterior glottis respiratory epithelium.

Fig 3–47. Sagittal section of a 5th-month fetus, Tucker Fetal Collection No. 411, 140 mm in length. Fibroelastic cartilage is present in the epiglottis (E). (From Tucker JA, Tucker and Tucker.)
In preparation for a pediatric tracheotomy, several points bear mention. The hyoid bone represents the most obvious palpable landmark. The thyroid cartilage often cannot be felt and the cricoid, although it has some definition, may feel like a large 1st tracheal ring. The thyrohyoid and cricothyroid membranes cannot be felt easily but may be inferred from the positions of the hyoid bone and cricoid cartilage.

In addition to anatomic considerations, the growth of the larynx has an effect on common pediatric laryngeal pathologies. The most commonly encountered laryngeal problems are (1) laryngomalacia, (2) vocal fold paralysis/paresis, and (3) subglottic

![Fig 4–16.](image-url) After the administration of topical anesthesia, the child is positioned on the parent’s lap with the arms and head gently secured. The infant safely tolerates this examination with minimal discomfort.

<table>
<thead>
<tr>
<th>Patient Age</th>
<th>Endotracheal Tube</th>
<th>Bronchoscope</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ID (mm)</td>
<td>OD (mm)</td>
</tr>
<tr>
<td>Premature</td>
<td>2.0–3.0</td>
<td>2.8–4.3</td>
</tr>
<tr>
<td>0–3 MO</td>
<td>3.5</td>
<td>5.0</td>
</tr>
<tr>
<td>3–9 MO</td>
<td>4.0</td>
<td>5.6</td>
</tr>
<tr>
<td>9 MO–2 YR</td>
<td>4.5</td>
<td>6.2</td>
</tr>
<tr>
<td>2–3 YR</td>
<td>5.0</td>
<td>7.0</td>
</tr>
<tr>
<td>4–5 YR</td>
<td>5.5</td>
<td>7.6</td>
</tr>
<tr>
<td>6–7 YR</td>
<td>6.0</td>
<td>8.2</td>
</tr>
</tbody>
</table>

Note: These endotracheal tube sizes refer to uncuffed tubes.
of the arytenoid cartilages are composed of elastic fibrocartilage and do not undergo ossification.

The male and female larynges differ little in size up to puberty. Thereafter, while the female larynx grows slightly, the male larynx enlarges in all dimensions, reaching the following average proportions.\(^3\)

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>44 mm</td>
<td>36 mm</td>
</tr>
<tr>
<td>Transverse diameter</td>
<td>43 mm</td>
<td>41 mm</td>
</tr>
<tr>
<td>Anteroposterior diameter</td>
<td>36 mm</td>
<td>26 mm</td>
</tr>
</tbody>
</table>

The thyroid cartilage (*thyrus* = "shield," Greek) is the largest laryngeal cartilage, and it shields the opening to the airway and supports most of the soft tissue folds in the larynx. The angle between the laminae of the thyroid cartilage exhibits sexual dimorphism with a 90° angle in men and a 120° angle in women. This angle is similar in both sexes before puberty. The laminae fuse at the midline symphysis with a narrow strip of cartilage, the intrathyroid cartilage, after birth, but it is not unusual to find residual intrathyroid cartilage in the midline in the infant. In men, the isthmus forms a downward
cartilages in the posterior gap, completes the first of the 3 sphincteric tiers of protection. The second tier of protection occurs at the level of the false cords, consisting of bilateral folds forming the roof of each laryngeal ventricle. The third tier of protection occurs at the level of the true vocal cords, which in man are shelflike with a slightly upturned free border. The inferior division of the thyroarytenoid muscle forms the bulk of this shelf, and with the passive valvular effect of the upturned border or the true cord margin, the true vocal cord perhaps is the most significant of the 3 barriers to aspiration.

Fig 6–3. Organizational model of the ipsilateral and crossed adductor reflex pathway in man.

Fig 6–4. Organizational model demonstrating the loss of contralateral R₁ under deep anesthesia.
Tests of vocal function, including all forms of laryngeal imaging, have come a long way from their inception in the latter part of the 19th century, and as we move forward in this 21st century, we may be edging toward more science and less art. Group data related to age, gender, phoneme produced, and vocal training are increasingly available.

Instruments designed specifically to quantify voice production are increasingly available. Clinical studies have documented the effectiveness of these instrumental measures for monitoring treatment effectiveness. Although voice testing has not taken on the aura or routine nature of the audiogram, it has matured to the point that it no longer seems acceptable to describe the voice by merely listening to the patient phonate or inspecting the larynx with a mirror and standard light source. The evolution of voice testing is in its infancy. Future development is likely to unfold similarly to audiometric testing, with normative data and standards for testing and routine measures likely to be developed and imposed on voice clinicians, to ensure quality of service of the patient. International standards committees have already been formed and have presented preliminary recommendations. Data collected from voice instruments are likely to improve understanding of the physiologic and anatomic aspects of voice production as well as the pathogenesis of various laryngeal diseases.

In this century, with rising health care costs and moves to contain them, clinicians are likely to be faced with tough choices concerning equipment selection. They would do well to be guided by a few simple questions: Does the instrument cover the entire range of production seen in children and adults with normal and disordered voice; does the instrument provide simultaneous measures of at least 2 parameters of vocal function; do the resultant data have a unique value that has direct clinical application; are the derived measures both valid and reliable; are the derived measures necessary to further

Fig 11-12. Flow diagram illustrating the role of stroboscopy and how it might be used to help management decisions and to determine the need for additional visualization techniques.
delivers kymographic images. These are obtained by putting together many (almost 150) successive images from the same line recorded at a high-speed rate (almost 8000 line images per second). These kymographic images, which are composed and delivered by the videokymographic camera in real time, are called “videokymographic images” or simply “videokymograms.” During phonation,
and the arytenoids can be visualized superior to the cricoid cartilage.

Coronal views are ideal for assessing the superior to inferior extent of neoplasms. In particular, the mucosal and submucosal extent of disease not apparent clinically may be assessed, which is particularly useful for assessment of subglottic extension of disease. The high signal of the fatty tissue in the normal paraglottic space offers an excellent anatomic landmark on coronal and axial T1W sequences. If the ventricle is not seen well, the false cord can be differentiated from the true cord on T1W images by the fatty signal of the false cord versus the intermediate density thyroarytenoid muscle signal of the true cord.

Axial views are best for evaluating laryngeal cartilage invasion but the appearance is quite variable depending on the degree of ossification. Ossified cartilage, which has medullary fat, will have a bright signal on T1W and FSE T2 images and a lower (darker) signal on conventional spin echo (CSE)T2W images and is excellent indicator for the lack of tumor involvement of that cartilage. Nonossified cartilage is usually of low signal on both T1W and T2W sequences. Ossified cartilage cortex looks black (hypointense or low signal) on both sequences. The cervical lymph nodes can be assessed on either sequence, but are more easily visualized on the T2 or post gadolinium T1 sequences.

Fig 16–8. MRI soft tissue resolution: advantageous for cartilage visualization. (a) Patient with large thyroid carcinoma surrounding trachea and cricoid cartilages. (a) Postgadolinium T1 fat suppressed image identifies cartilaginous tissue as well as accentuates tumor enhancement and its interface with adjacent tissues (arrow). (b, d) Different patient, post-thyroidectomy with residual tracheomalacia. (b) axial unenhanced CT incompletely identifies tracheal cartilage (arrow) (c) Axial T2 image better displays cartilage structure, its thickness and continuity, and relationship to the tracheal lumen and the thyroid bed tissues.

COMPUTED TOMOGRAPHY VERSUS MAGNETIC RESONANCE IMAGING

The advantages of CT, in general, include greater availability or accessibility, greater patient acceptance or compliance, lower cost, faster image acquisition...
seen in Figure 27–4, other causes of supraglottic stenosis are related to infections of the supraglottic and epiglottic tissue and cartilage complicated by the trauma of intubation.

Acquired glottic stenosis occurs in the anterior commissure or the posterior glottis in the intra-arytenoid region. Anterior commissure stenosis is usually the result of an iatrogenic injury such as operating on both sides of the anterior commissure at the same time leading to scarring. As seen in Figure 27–5, in the pediatric patient population, the likely cause is overly aggressive removal of laryngeal papilloma in the anterior commissure region.

The etiology of posterior glottic stenosis in children is usually attributed to prolonged intubation27–29 as seen in Figure 27–6. Although posteriorglottic stenosis is often seen in conjunction with subglottic stenosis, it also occurs as an isolated condition. Other causes of posterior glottic stenosis are related infection, inflammatory conditions, neoplasms, and trauma and are outlined in Table 27–2. Transglottic stenosis is rare and unfortunate. Etiology is similar to posterior glottic stenosis.

EVALUATION AND MANAGEMENT

Symptoms of glottic and subglottic stenosis relate to airway, voice, and swallowing. The evaluation of a child with suspected glottic or subglottic stenosis varies based on the acuity and status of the airway, and depends on whether the child is intubated, unintubated, or already has a tracheotomy. An acutely obstructed child is approached much differently than a stable child with a tracheotomy or an intubated child. Stridor is the most common symptom

Fig 27–4. Supraglottic stenosis involving the epiglottis, intra-arytenoid and aryepiglottic fold region in a child following a bacterial infection of the epiglottis.

Fig 27–5. Anterior glottic web formation after overly aggressive laryngeal papilloma surgery.

Fig 27–6. Posterior glottic stenosis from prolonged intubation in a patient with pathologic GERD.
describes a ratcheting sensation felt during passive flexion extension of the upper limb or neck. Bradykinesia refers to slowness of voluntary movement. When this affects the muscles of facial expression, it yields a characteristic lack of facial affect described in the medical literature as “mask-like.” The integrity of postural reflexes can be easily evaluated by asking the patient to walk 3 or 4 paces and turn 180 degrees. Affected patients will not be able to pivot, but instead will take several steps to rotate their body.

The underlying pathology is neuronal loss in the substantia nigra and consequent loss of dopamine in the basal ganglia. The mainstay of treatment remains dopamine replacement, augmented by agents to boost transit of levodopa across the blood-brain barrier, and other dopamine receptor agonists that have been developed in recent years. The aim is symptomatic relief, and the underlying disease remains relentlessly progressive. Stimulation of deep brain nuclei by means of a surgically implanted electrode is gaining popularity in incapacitating cases of parkinsonism that resist medical management.

Parkinson Hypophonia

The characteristic low-intensity monotone voice of patients with PD has been termed Parkinson hypophonia. The laryngoscopic correlates of Parkinson hypophonia include vocal fold bowing (spindle-shaped glottic insufficiency) (Fig 34–2), vocal fold bradykinesia, and tremor.6–8 These laryngeal abnormalities usually coexist with oral-motor articulatory difficulties and poor respiratory function and coordination, both reflections of underlying rigidity and bradykinesia. These are not infrequently accompanied by cognitive dysfunction.9–15 In addition, underestimation of own-speech volume is a perceptual anomaly that has been found consistently in patients with Parkinson hypophonia, and may be a critical derangement in this type of dysphonia.14,15

Standard medical treatment with levodopa generally improves speech and voice difficulties in PD.16–18 Early enthusiasm for vocal fold augmentation to remedy the observed glottic insufficiency19,20 has been tempered by an understanding for the broader range of abnormalities involved in Parkinson hypophonia; only in the carefully selected patient without severe respiratory or articulatory dysfunction is augmentation likely to offer appreciable benefit. Deep brain stimulation (DBS) has been shown to be most effective in tremor suppression, but evidence for practical voice and speech benefit from this procedure remains equivocal.

The most effective intervention, apart from systemic medication, may be behavioral therapy. Lee Silverman Voice Therapy (LSVT) is an intensive course of behavioral therapy that aims to increase phonatory effort to overcome the impaired self-perception of loudness and appears to result in

Fig 34–2. Best phonatory glottal closure is shown at right in this 56-year-old attorney with Parkinson’s disease. Glottic insufficiency is exacerbated by early vocal fold atrophy. Symptoms were typical of Parkinson hypophonia, and the patient improved with voice therapy.
windows, regardless of the type of implant or formula one chooses to follow. The most critical landmark is a horizontally oriented line extending from the midway point of the thyroid cartilage ventrally and extending dorsally parallel to the inferior plane of the cartilage. We first measure the distance from the thyroid notch to the inferior margin (approximately 20 mm in males and 15 mm in females). The site of the anterior commissure is estimated to be half this distance and there is often a small depression in the cartilage at this point. The plane of the superior edge of the vocal fold corresponds to the horizontal line projected posteriorly from this point (Fig 40–4). When landmarks are obscured by surgery or trauma it is easy to confirm this level by inserting a needle and observing intraluminal placement with the endoscope or using a lacrimal probe through a small pilot hole. For the typical Silastic carved or preformed prosthesis, a rectangular window is marked out on the surface of the thyroid cartilage such that the superior edge is at the projected line of the vocal fold (Fig 40–4). It is important to keep the window as inferior as possible while preserving at least 3 mm of cartilage along the inferior rim for support. The anterior edge should be 6 to 10 mm posterior to the ante-

Fig 40–3. Two prototypical approaches to window placement are shown. This figure illustrates the use of a prosthesis such as the Montgomery or some hand-carved Silastic patterns. Correction of the glottic insufficiency (A) includes some medialization of the vocal process when the shim is placed (B). The use of Gore-Tex is represented in a similar sequence (C, D) demonstrating correction of vocal fold bowing.
therapeutic vocal fold injection, and other laryngeal trauma.12,43

Chronic laryngitis sicca with superinfection is another challenging problem to treat. These patients tend more often to be elderly with multiple medical problems, and consequently multiple medications that may result in mucosal drying. As a result, epithelial defenses are compromised and low-grade bacterial superinfection may take place, particularly in association with stagnant secretions overlying the dry mucosa (Fig 43–3). The normal function of the larynx with mucus lubrication, mucosal protection, and the rate of airflow traversing the larynx is compromised in such individuals. Consequently, the conditions are more favorable for the creation of biofilms, which may explain why these patients are more often refractory to treatment.

Common and uncommon bacterial pathogens causing laryngitis are listed in Table 43–2. The following discussion focuses on acute epiglottitis/supraglottitis which still may be encountered as a life-threatening entity, as well as a synopsis of other uncommon bacterial infections of the larynx.

Acute Epiglottitis

Epiglottitis has been traditionally felt to be a sequel to infection of Waldeyer’s ring or to a traumatic event, supported by case reports that describe a history of preceding pharyngitis or upper respiratory symptoms.44 The organism most commonly associated with epiglottitis is \textit{Haemophilus influenzae}.

<table>
<thead>
<tr>
<th>Table 43–2. Bacterial Infections in the Larynx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common pathogens</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Less common pathogens</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

Preface ix
About the Editors x
Contributors xvii

Part I. Larynx and Deglutition 1

1 Disorders of the Upper Esophageal Sphincter 3
 Keith G. Saxon, Sandra B. Martin, Raj K. Goyal, and Jo Shapiro

2 Gastroesophageal Reflux Disease and Voice Disorder 27
 James H. Kelly and Kevin P. Labey

3 Diagnosis and Management of Dysphagia 37
 Celia F. Stewart, Phillip C. Song, and Andrew Blitzer

4 Evaluation and Management of Chronic Aspiration 61
 Phillip C. Song, Jerome S. Schwartz, and Andrew Blitzer

Part II. Laryngotracheal Trauma 79

5 Traumatic Disorders of the Pediatric Larynx 81
 David L. Mandell and Robert F. Yellon

6 Evaluation and Management of Laryngotracheal Trauma 91
 Simon R. A. Best, John K. Joe, Douglas A. Ross, and Clarence T. Sasaki

7 Laryngeal Stenosis 107
 Indranil Debnath, Randal C. Paniello, and J. Gershon Spector

Part III. Larynx Endocrine Systems 153

8 Endocrine Disorders of the Larynx 155
 Mai Thy Truong and Edward J. Damrose

9 Diseases of the Thyroid as They Affect the Larynx 167
 Larry J. Shemen
Part IV. Benign Laryngeal Lesions

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Nodules, Polyps, Reinke Edema, Metabolic Deposits, and Foreign Body Granulomas</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frederik G. Dikkers</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Laryngeal Cysts, Pseudocysts, and Laryngoceles</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>Seib M. Cohen, J. Pieter Noordzij, C. Gaelyn Garrett, Mark S. Courey,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Robert H. Ossoff</td>
<td></td>
</tr>
</tbody>
</table>

Part V. Neoplasms of the Larynx

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Benign Neoplasms of the Larynx</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Ramon A. Franco, Jr, Jeffrey N. Myers, Eugene M. Myers, and E. Leon Barnes</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Microlaryngoscopy and Endolaryngeal Microsurgery</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>Lucian Sulica</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Epidemiology and Pathogenesis of Laryngeal Carcinoma</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Cristina Isabel Cann and Marvin P. Fried</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Experimental Laryngeal Carcinogenesis and Mechanism Studies</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>Umberto Saffiotti</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Specific Immunologic Aspects of Laryngeal Cancer</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>William J. Richtsmeier</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Molecular Biology of Laryngeal Cancer</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>Thomas E. Carey and Carol R. Bradford</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Laryngeal Pathology</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>Margaret S. Brandwein-Gensler, Panna S. Mabadevia, and Douglas R. Gnepp</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>The Classification and Staging of Laryngeal Cancer</td>
<td>415</td>
</tr>
<tr>
<td></td>
<td>Katherine C. Yung, Jay F. Piccirillo, and Peter D. Lacy</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Laryngeal Epithelial Changes: Diagnosis and Therapy</td>
<td>451</td>
</tr>
<tr>
<td></td>
<td>Alfio Ferlito, Patrick J. Bradley, and Alessandra Rinaldo</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Cancer of the Supraglottis</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>Alfio Ferlito, Richard V. Smith, Carl E. Silver, and Alessandra Rinaldo</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Surgical Treatment of Supraglottic Cancer</td>
<td>477</td>
</tr>
<tr>
<td></td>
<td>Carl E. Silver, Alfio Ferlito, Richard V. Smith, and Alessandra Rinaldo</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Cancer of the Glottis</td>
<td>491</td>
</tr>
<tr>
<td></td>
<td>Richard V. Smith and Marvin P. Fried</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>24</td>
<td>Conservation Surgery for Glottic Cancer</td>
<td>Dana M. Hartl, Daniel F. Brasnu, and Marvin P. Fried</td>
</tr>
<tr>
<td>25</td>
<td>Cancer of the Subglottis</td>
<td>Bradley A. Schiff and Richard V. Smith</td>
</tr>
<tr>
<td>26</td>
<td>Cancer of the Hypopharynx</td>
<td>Jatin P. Sbab and Jennifer M. Bocker</td>
</tr>
<tr>
<td>27</td>
<td>Voice Rehabilitation After Total Laryngectomy</td>
<td>Ranny van Weissenbruch</td>
</tr>
<tr>
<td>28</td>
<td>Peristomal Cancer</td>
<td>Alfio Ferlito, Carl E. Silver, and Alessandra Rinaldo</td>
</tr>
<tr>
<td>29</td>
<td>Cancer of the Larynx: Treatment of the Neck</td>
<td>Jesus E. Medina</td>
</tr>
<tr>
<td>30</td>
<td>Treatment of the N0 Neck in Nonconventional Neoplasms of the Larynx</td>
<td>Alfio Ferlito, Alessandra Rinaldo, Kenneth O. Devaney, and Vanni Mondin</td>
</tr>
<tr>
<td>31</td>
<td>Managing Complications of Surgical Laryngeal Intervention</td>
<td>Yasushi Murakami and Yasuo Hisa</td>
</tr>
<tr>
<td>32</td>
<td>Radiation Therapy for Laryngeal Cancer</td>
<td>Madhur K. Garg and Shalom Kalnicki</td>
</tr>
<tr>
<td>33</td>
<td>Chemotherapy in the Management of Larynx Cancer</td>
<td>Missak Haigentz, Jr.</td>
</tr>
<tr>
<td>34</td>
<td>The Management of Recurrent Laryngeal Cancer</td>
<td>Richard V. Smith, Bradley A. Schiff, and Marvin P. Fried</td>
</tr>
<tr>
<td>35</td>
<td>Prognostic Factors of Laryngeal Cancer</td>
<td>Alfio Ferlito, Byron J. Bailey, and Alessandra Rinaldo</td>
</tr>
<tr>
<td>36</td>
<td>Chemoprevention of Laryngeal Cancer</td>
<td>Boudewijn J.M. Braakbuist and C. René Leemans</td>
</tr>
<tr>
<td>37</td>
<td>Secondary Neoplasms of the Larynx</td>
<td>Adel K. El-Naggar</td>
</tr>
<tr>
<td>38</td>
<td>Pregnancy and Cancer of the Larynx</td>
<td>Alfio Ferlito and Jan Olofsson</td>
</tr>
<tr>
<td>39</td>
<td>Paraneoplastic Syndromes in Patients with Cancer of the Larynx and Hypopharynx</td>
<td>Alfio Ferlito and Alessandra Rinaldo</td>
</tr>
</tbody>
</table>
viii THE LARYNX

40 Laryngeal Transplantation 753
 Robert R. Lorenz and Marshall Strome

41 Psychological Issues in Laryngeal Disease and Laryngeal Surgery 765
 Frank E. Lucente, James J. Strain, Jared M. Wasserman, and Boris L. Bentsianov

42 Future Directions in Laryngeal Cancer Research and Therapy 779
 Nicolas F. Schlecht, Thomas J. Belbin, Michael B. Prystowsky, and Richard V. Smith

Index 797
CONTRIBUTORS TO VOLUME II

Byron J. Bailey, MD
Chairman Emeritus
Department of Otolaryngology
University of Texas Medical Branch
Galveston, Texas
Chapter 35

E. Leon Barnes, MD, FASCP, FCAP
Professor of Pathology and Otolaryngology
University of Pittsburgh School of Medicine
Chief, Division of Head and Neck/Endocrine Pathology
University of Pittsburgh Medical Center
Professor of Oral and Maxillofacial Pathology
University of Pittsburgh School of Dental Medicine
Pittsburgh, Pennsylvania
Chapter 12

Thomas J. Belbin, PhD
Assistant Professor
Department of Pathology
Albert Einstein College of Medicine
Bronx, New York
Chapter 42

Boris L. Bentsianov, MD
Department of Otolaryngology-Head and Neck Surgery
Assistant Professor,
SUNY Downstate Medical Center
Director,
Division of Laryngology Voice and Swallowing
Brooklyn, New York
Chapter 41

Simon R. A. Best, MD
Department of Otolaryngology-Head and Neck Surgery
Johns Hopkins Hospital
Baltimore, Maryland
Chapter 6

Andrew Blitzer, MD, DDS
Director, New York Center for Voice and Swallowing Disorders at St. Luke's-Roosevelt Hospital and the Head and Neck Surgical Group
New York, New York;
Professor of Clinical Otolaryngology
College of Physicians and Surgeons of Columbia University
New York, New York
Chapters 3 and 4

Jennifer M. Bocker, MD
Head and Neck Service
Memorial Sloan-Kettering Cancer Center
New York, New York
Chapter 26

Boudewijn J.M. Braakhuis, PhD
Department of Otolaryngology-Head and Neck Surgery
VU University Medical Center
Amsterdam, The Netherlands
Chapter 36

Carol R. Bradford, MD, FACS
Professor and Associate Chair
Clinical Programs and Education
Department of Otolaryngology-Head and Neck Surgery
University of Michigan
Ann Arbor, Michigan
Chapter 17

Patrick J. Bradley, MB, BCh, BAO, DCH, FRCSI, FRCS, FHKCORL, FACS, FRCSLT (Hon), FRACS (Hon), MBA
Professor of Head and Neck Oncologic Surgery
The University of Nottingham
Nottingham University Hospitals
Queens Medical Centre Campus
Nottingham
England
Chapter 20

Margaret S. Brandwein-Gensler, MD
Professor of Pathology and Otolaryngology
Montefiore Medical Center
Albert Einstein College of Medicine
Bronx, New York
Chapter 18

Daniel F. Brasnu, MD
Professor and Chief of Department
Department of Otolaryngology Head and Neck Surgery
European Georges Pompidou Hospital, AP-HP
Voice, Biomaterials and Head and Neck Oncology Research Laboratory
University René Descartes Paris V
Paris, France
Chapter 24

Cristina Isabel Cann, MPH
Consultant Epidemiologist
Brookline, Massachusetts
Chapter 14

Mark S. Courey, MD
Professor, UCSF
Department of Otolaryngology-Head and Neck Surgery
Director, Division of Laryngology
San Francisco, California
Chapter 11

Edward J. Damrose, MD, FACS
Chief
Division of Laryngology
Department of Otolaryngology-Head and Neck Surgery
Stanford University Medical Center
Palo Alto, California
Chapter 8

Indranil Debnath, MD
Department of Otolaryngology-Head and Neck Surgery
Washington University School of Medicine
St. Louis, Missouri
Chapter 7

Kenneth O. Devaney MD, JD, FCAP
Chair, Department of Pathology
Allegiance Health
Jackson, Michigan
Chapter 30

Frederik G. Dikkers, MD, PhD
Professor
Department of Otorhinolaryngology
University Medical Center Groningen
University of Groningen
Groningen
The Netherlands
Chapter 10

Adel K. El-Naggar, MD, PhD
Professor of Pathology
The University of Texas
MD Anderson Cancer Center
Houston, Texas
Chapter 37

Alfio Ferlito, MD, DLO, DPath, FRCS ad eundem, FRCS (Eng, Glasg, Ir) ad eundem, FDSRCS ad eundem, FACS, FHKCORL, FRCPatb, FASCP, MCAP
Director of the Department of Surgical Sciences
Professor and Chairman of the ENT Clinic

The Larynx
CONTRIBUTORS TO VOLUME II

University of Udine School of Medicine
Udine, Italy
Chapters 20, 21, 22, 28, 30, 35, 38, 39

Ramon Arturo Franco, Jr, MD
Director, Division of Laryngology
Assistant Professor, Department of Otology and Laryngology
Harvard Medical School
Medical Director, Voice and Speech Laboratory
Massachusetts Eye and Ear Infirmary
Boston, Massachusetts
Chapter 12

Marvin P. Fried, MD, FACS
Professor and University Chairman
Department of Otolaryngology–Head and Neck Surgery
Montefiore Medical Center
Albert Einstein College of Medicine
Bronx, New York
Chapters 14, 23, 24, 34

Madhur K. Garg, MD
Associate Professor and Clinical Director
Department of Radiation Oncology
Montefiore Medical Center/
Albert Einstein College of Medicine
Bronx, New York
Chapter 32

C. Gaelyn Garrett, MD
Medical Director, Associate Professor
Vanderbilt Voice Center
Nashville, Tennessee
Chapter 11

Douglas R. Gnepp, MD
Professor of Pathology
Warren Alpert School of Medicine at Brown University
Senior Pathologist
Rhode Island Hospital Department of Pathology
Providence, Rhode Island
Chapter 18

Raj K. Goyal, MD
Mallinckrodt Professor of Medicine
Harvard Medical School
VA Boston Healthcare System
Boston, Massachusetts
Chapter 1

Missak Haigentz, Jr, MD
Division of Oncology
Department of Medicine
Albert Einstein College of Medicine/
Montefiore Medical Center
Bronx, New York
Chapter 33

Dana M. Hartl, MD, PhD
University Paris III CNRS 7018
Otolaryngology Head and Neck Surgery
Institut Gustave Roussy
Villejuif, France
Chapter 24

Yasuo Hisa, MD, PhD
Professor and Chairman
Department of Otolaryngology–Head and Neck Surgery
Kyoto Prefectural University of Medicine
Kyoto, Japan
Chapter 31

John K. Joe, MD
Assistant Professor
Section of Otolaryngology
Yale University School of Medicine
New Haven, Connecticut
Chapter 6

Shalom Kalnicki, MD, FACRO
Professor and Chairman
Department of Radiation Oncology
Montefiore Medical Center
Albert Einstein College of Medicine
Bronx, New York
Chapter 32

James H. Kelly, MD, FACS
Chairman,
Department of Otolaryngology–Head and Neck Surgery
Greater Baltimore Medical Center
Associate Professor,
Department of Otolaryngology–Head and Neck Surgery and
Department of Neurology
Johns Hopkins Medical Institutes
Baltimore, Maryland
Chapter 2
Peter D. Lacy, MD, FRCSI
Dept. Otolaryngology, Head and Neck Surgery
Beaumont Hospital
Dublin, Ireland
Chapter 19

Kevin P. Lahey, MD, PhD
Neurolaryngology Fellow
Department of Otolaryngology, Head and Neck Surgery
Johns Hopkins School of Medicine
Greater Baltimore Medical Center
Baltimore, Maryland
Chapter 2

C. René Leemans, MD, PhD
Department of Otolaryngology-Head and Neck Surgery
VU University Medical Center
Amsterdam, The Netherlands
Chapter 36

Robert R. Lorenz, MD
Head, Section of Head and Neck Surgery
Assistant Professor of Surgery, Cleveland Clinic
Lerner College of Medicine of Case Western Reserve University
The Cleveland Clinic Foundation
Cleveland, Ohio
Chapter 40

Frank E. Lucente, MD, FACS
Vice Dean for Graduate Medical Education and Professor of Otolaryngology
SUNY-Downstate Medical Center
Chief of Academic Affairs
Long Island College Hospital
Brooklyn, New York
Chapter 41

Panna S. Mahadevia, MD
Associate Professor of Pathology
Albert Einstein College of Medicine
Attending Pathologist
Montefiore Medical Center
Bronx, NY
Chapter 18

David L. Mandell, MD, FAAP, FACS
Division of Pediatric Otolaryngology
Children’s Hospital of Pittsburgh
Department of Otolaryngology
University of Pittsburgh
Pittsburgh, Pennsylvania
Chapter 5

Sandra B. Martín, MS, CCC-SLP
Research Speech Pathologist
National Institutes of Health
National Institute of Neurological Disorders and Stroke
Laryngeal and Speech Section
Bethesda, Maryland
Chapter 1

Jesus E. Medina, MD, FACS
Paul and Ruth Jonas Professor and Chair
Department of Otorhinolaryngology
University of Oklahoma Health Sciences Center
Oklahoma City, Oklahoma
Chapter 29

Vanni Mondin, MD, PhD
Clinical and Research Fellow in Otolaryngology
Department of Surgical Sciences
ENT Clinic
University of Udine School of Medicine
Udine, Italy
Chapter 30

Yasushi Murakami, MD, PhD
Head, Kyoto Gakusai Institute of Medicine,
Emeritus Professor, Kyoto Prefectural University of Medicine
Kyoto, Japan
Chapter 31

Eugene M. Myers, MD, FACS, FRCSEd (Hon)
Distinguished Professor and Emeritus Chair
Department of Otolaryngology
University of Pittsburgh School of Medicine
The Eye and Ear Institute
Pittsburgh, Pennsylvania
Chapter 12

Jeffrey N. Myers, MD, PhD, FACS
Professor and Director of Research
Deputy Chair for Academic Programs
Department of Head and Neck Surgery
The University of Texas
MD Anderson Cancer Center
Houston, Texas
Chapter 12
J. Pieter Noordzij, MD
Associate Professor
Department of Otolaryngology-Head and Neck Surgery
Boston University Medical Center
Boston, Massachusetts
Chapter 11

Jan Olofsson, MD
Haukeland University Hospital
Department of Otolaryngology-Head and Neck Surgery
Bergen, Norway
Chapter 38

Robert H. Ossoff, DMD, MD
Assistant Vice-Chancellor for Compliance and Corporate Integrity
Guy M. Maness Professor of Laryngology and Voice Executive Medical Director
Vanderbilt Voice Center
Nashville, Tennessee
Chapter 11

Randal C. Paniello, MD
Department of Otolaryngology-Head and Neck Surgery,
Washington University School of Medicine
St. Louis, Missouri
Chapter 7

Jay F. Piccirillo, MD, FACS
Professor and Director
Clinical Outcomes Research Office
Department of Otolaryngology-Head and Neck Surgery
Washington University School of Medicine
Attending Physician
Barnes-Jewish Hospital
St. Louis Children’s Hospital
St. Louis, Missouri
Chapter 19

Michael B. Prystowsky, MD, PhD
Professor and University Chairman
Department of Pathology
Albert Einstein College of Medicine
Montefiore Medical Center
Bronx, New York
Chapter 42

William J. Richtsmeier, MD, PhD
Director, Regional Cancer Center
Bassett Healthcare
Otolaryngology-Head and Neck Surgery
Cooperstown, New York
Chapter 16

Alessandra Rinaldo, MD, FRCSI ad eundem, FACS
Clinical Professor of Otolaryngology
Department of Surgical Sciences
ENT Clinic
University of Udine School of Medicine
Udine, Italy
Chapters 20, 21, 22, 28, 30, 35, 39

Douglas A. Ross, MD
Professor, Vice-Chief
Section of Otolaryngology
Yale University School of Medicine
New Haven, Connecticut
Chapter 6

Umberto Saffiotti, MD
Scientist Emeritus,
National Cancer Institute, National Institutes of Health
Bethesda, Maryland
Chapter 15

Clarence T. Sasaki, MD
The Charles W. Ohse Professor
Chief Section of Otolaryngology
Director Head and Neck Unit
Yale Comprehensive Cancer Center
Yale University School of Medicine
New Haven, Connecticut
Chapter 6

Keith G. Saxon, MD, FACS
Assistant Professor of Otology and Laryngology
Harvard Medical School
Brigham and Women’s Hospital
Surgical Oncologist, Dana Farber Cancer Institute
Boston, Massachusetts
Chapter 1

Bradley A. Schiff, MD
Department of Otorhinolaryngology-Head and Neck Surgery
Albert Einstein College of Medicine, Montefiore Medical Center
Bronx, New York
Chapters 25, 34

Nicolas F. Schlecht, PhD
Assistant Professor
Departments of Epidemiology and Population Health and Medicine
Albert Einstein College of Medicine
Bronx, New York
Chapter 42

Jerome S. Schwartz, MD
The Feldman ENT Group, P.C.
Volunteer Clinical Faculty Otolaryngology
Georgetown University Hospital
Washington, D.C.
Chapter 4

Jatin P. Shah, MD, MS, FACS, FRCS Ed (Hon), FRACS (Hon)
Head and Neck Service
Memorial Sloan-Kettering Cancer Center
New York, New York
Chapter 26

Jo Shapiro, MD, FACS
Chief, Division of Otolaryngology
Brigham and Women’s Hospital
Associate Professor of Otolaryngology
Harvard Medical School
Boston, Massachusetts
Chapter 1

Larry J. Shemen, MD, FRCS (C), FACS
Associate Clinical Professor of Otorhinolaryngology
Weill Medical College, Cornell University
Chief, Head and Neck Service
New York Hospital, Queens
Attending Surgeon,
Lenox Hill Hospital, Manhattan Eye Ear Throat Hospital
St. Vincent’s Medical Center
New York, New York
Chapter 9

Carl E. Silver, MD, FACS
Professor Emeritus
Departments of Surgery and Otolaryngology/Head and Neck Surgery
Albert Einstein College of Medicine
Bronx, New York
Chapters 21, 22, 28

Richard V. Smith, MD, FACS
Associate Professor and Vice-Chair
Department of Otorhinolaryngology-Head and Neck Surgery
Albert Einstein College of Medicine
Director, Head and Neck Service
Montefiore Medical Center
Bronx, New York
Chapters 21, 22, 23, 25, 34, 42

Phillip C. Song, MD
Otology and Laryngology
Harvard Medical School
Massachusetts Eye and Ear Infirmary
Boston, Massachusetts
Chapters 3, 4

J. Gershon Spector, MD, FACS
Professor
Department of Otolaryngology and Head and Neck Surgery
Division of Head and Neck Surgery
Washington University School of Medicine
St. Louis, Missouri
Chapter 7

Celia F. Stewart, PhD, CCC-SLP
Associate Professor
Department of Speech-Language Pathology and Audiology
New York University
New York, New York
Chapter 3

James J. Strain, MD
Professor of Psychiatry
Division of Behavioral Medicine and Consultation Psychiatry
Mount Sinai School of Medicine
New York, New York
Chapter 41

Marshall Strome, MD, MS, FACS
Director, Center for Head and Neck Oncology
Co-Director, Head and Neck Transplantation Program, Center for Facial Reconstruction
New York Head and Neck Institute
New York, New York
Chapter 40
Lucian Sulica, MD
Associate Professor
Director, Voice Disorders/Laryngology
Department of Otorhinolaryngology
Weill Cornell Medical College
New York, New York
Chapter 13

Mai Thy Truong, MD
Department of Otolaryngology-Head and Neck Surgery
Stanford University Medical Center
Stanford, California
Chapter 8

Jared M. Wasserman, MD
Fellow, Division of Laryngology
Department of Otolaryngology Head and Neck Surgery
Massachusetts Eye and Ear Infirmary
Harvard Medical School
Boston, Massachusetts
Chapter 41

Ranny van Weissenbruch, MD, PhD
Wilhelmina Hospital Assen
Department of Otorhinolaryngology
Assen, The Netherlands
Chapter 27

Robert F. Yellon, MD
Associate Professor of Otolaryngology
University of Pittsburgh School of Medicine
Co-Director
Director of ENT Clinical Services
Division of Pediatric Otolaryngology
Children's Hospital of Pittsburgh
Pittsburgh, Pennsylvania
Chapter 5

Katherine C. Yung, MD
Department of Otolaryngology-Head and Neck Surgery
Barnes-Jewish Hospital and Washington University School of Medicine
St. Louis, Missouri
Chapter 19
endeavor is that, although primarily concerned with restoration of mucosal pliability, it is carried out on the static vocal fold, without any means of assessing vibratory function intraoperatively. A new instrument to accomplish this task has been proposed, but its practical utility remains to be determined.

Subepithelial Injection

Kass et al have formally described the useful technique of subepithelial injection into the vocal fold. Such an injection facilitates subepithelial dissection by expanding tissue planes, and, when a hemostatic agent like epinephrine is used, by aiding in hemostasis. It also serves to better delineate pathology in cases where the lamina propria is obliterated, as in scar sulcus, and tumor invasion. Infiltration is easily performed with specially designed needles, or by means of a trimmed, 25-gauge or smaller butterfly needle.

Surgical Approach

The surgical approach in a given case is determined by the relation of the lesion to the layered vocal fold microanatomy, and informed by the appearance of the lesion at stroboscopy. The surgeon should always be guided by the principal of maximal preservation of normal tissue, and its corollary of minimal handling and disruption of uninvolved tissue. There is certainly no place for the removal of uninvolved epithelium as “margins” in nonmalignant lesions of the vocal fold. In certain circumstances, for example, when there are mild to moderate reactive changes contralateral to the primary lesion, there is a good case to be made for leaving small irregularities undisturbed.

Most benign lesions of the vocal fold arise within the superficial lamina propria. Microflap surgery, the dominant surgical paradigm in endolaryngeal microsurgery, offers subepithelial access for removal of these lesions and preserves overlying tissue. Since the widespread adoption of microflap approaches, it has become common to speak of the superficial lamina propria as the natural plane of dissection in microlaryngoscopic surgery. Unfortunately, this has created the impression that disruption of this layer is somehow free of consequences. In fact, the contrary is probably true; it is the single most important layer for phonatory vibration. Its loose structure causes it to cleave readily, a tendency that offers the surgeon a path of low resistance. Preventing undue separation of this layer beyond the minimal requirements for lesion excision is a challenge of endolaryngeal microsurgery. Epithelial incisions, once made quite laterally to avoid trauma to the epithelium of the vibratory margin, have tended to be placed closer to the lesion to minimize the amount of superficial lamina propria which must be disturbed to reach the pathology.
lateral, and herniates through the thyrohyoid membrane. The differential diagnosis of saccular cysts may also include a branchial cleft cyst. The anatomic location of the duct or tract will also aid in the distinction. The tract of a branchial cleft cyst will not lead through the thyrohyoid membrane, but will continue superiorly along the anterior border of the sternocleidomastoid muscle and may end at the angle of the mandible or in the tonsillar bed.

Ductal Cysts

Squamous, “tonsillar” and oncocytic laryngeal cysts can be the result of blockage of a minor salivary gland duct. As mentioned, this is the most commonly encountered type of laryngeal cyst. The cyst lining is actually the dilated ductal epithelium; it may be squamous, oncocytic (see subsequent discussion on salivary lesions) or squamous with surrounding lymphoid stroma—referred to as “tonsillar” cysts (Fig 18–11). Squamous cysts and oncocytic cysts have a predisposition for the ventricular bands, ventricle, aryepiglottic folds, and epiglottis. Tonsillar cysts have a predisposition for the vallecula—an area with tonsillar remnants. Simple conservative excision is curative.

Other Laryngeal Cysts and Sinuses

Epidermal inclusion cysts, dermoid cysts, and branchial cleft cysts may occur in the endolarynx. An epidermoid cyst, a keratin-filled cyst lined by stratified squamous mucosa, may be the result of a traumatic mucosal inclusion, or a congenital rest. Rarer still are dermoid cysts, which contain skin adnexal structures and are purely mature benign growths.
Treatment and Prognosis

Conservative endoscopic removal will be curative for most cases. GCT have a very low rate (8%) of recurrence, even after incomplete excision. Recurrent tumors or frankly malignant tumors require resection with free margins. Twelve of 20 patients reported in the literature with metastatic malignant GCT ultimately died of disease. We have seen a large (4.7-cm) hypopharyngeal GCT in a 29-year-old woman, which was ultimately fatal after locoregional metastasis. We have also seen a recurrent, non-metastasizing laryngeal GCT, with atypical features (nuclear pleomorphism, spindling of cells, Pagetoid spread into overlying mucosa), that we classified as an atypical GCT. Chiang et al recently reported a patient with malignant laryngeal GCT and lung metastases.

Squamous Cell Carcinoma

Clinical Features

The exact laryngeal site for a tumor may determine or influence (1) the type of presenting symptoms, (2) stage at presentation, (3) surgical options, and (4) prognosis. Glottic tumors present with changes in voice quality, that is, hoarseness; patients tend to seek medical care when these tumors are relatively small. Large glottic tumors or bilateral glottic tumors may present with worsening upper airway obstruction and stridor (Fig 18–17). Supraglottic tumors may be larger than glottic tumors before becoming symptomatic (Fig 18–18). Epiglottic tumors may cause a change in vocal quality (a muffled or “hot potato voice”). Tumors at the base of the epiglottis may be asymptomatic and escape visualization at indirect laryngoscopy (“winklekarzinom” or cancer in the corner”). Primary ventricular carcinomas are rare, and the majority of tumors encountered here result from the direct spread of glottic primaries. Primary ventricular carcinomas are noteworthy in that they remain hidden from the observer on laryngeal examination, merely forming a bulge under the intact vestibular fold mucosa. Most “infraglottic” tumors actually arise from the undersurface of the vocal fold; they are considered and staged as glottic tumors. Infracellotit carcinomas may also present with hoarseness. Direct microlaryngoscopy may reveal their presence only after the vocal cords are
histopathologic grade (G), using the Broder’s classification (Table 19–5),74 be recorded. Other tumors of the head and neck may originate from tissues of glandular epithelium, odontogenic, lymphoid, various soft tissue, or bone and cartilage origin. Only laryngeal tumors of squamous cell origin are included in the AJCC TNM cancer staging system. Because tumors of squamous cell origin always display histopathologic differentiation, grades of G1, G2, or G3 are always used. Tumors containing areas of undifferentiation adjacent to areas of squamous differentiation are classified as poorly differentiated.

Table 19–2. Primary Tumor Categories (T)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>Primary tumor cannot be assessed</td>
</tr>
<tr>
<td>T0</td>
<td>No evidence of primary tumor</td>
</tr>
<tr>
<td>Tis</td>
<td>Carcinoma in situ</td>
</tr>
</tbody>
</table>

Supraglottis

T1	Tumor limited to one site of the supraglottis with normal vocal cord mobility
T2	Tumor invades mucosa of more than one adjacent subsite of the supraglottis or region outside the supraglottis (eg, mucosa of base of tongue, vallecula, medial wall of pyriform sinus) without fixation of the larynx
T3	Tumor limited to larynx with vocal cord fixation and/or invades any of the following: postcricoid area, preepiglottic tissues, paraglottic space, and/or minor thyroid cartilage erosion (eg, Inner cortex)
T4a	Tumor invades through the thyroid cartilage and/or invades tissues beyond the larynx (eg, trachea, soft tissues of neck including deep extrinsic muscle of the tongue, strap muscles, thyroid, or esophagus)
T4b	Tumor invades prevertebral space, encases carotid artery or invades mediastinal structures

Glottis

T1	Tumor limited to the vocal cord(s), which may involve the anterior or posterior commissures, with normal vocal cord mobility
T1a	Tumor limited to one vocal cord
T1b	Tumor involves both vocal cords
T2	Tumor extends to the supraglottis and/or subglottis or with impaired vocal cord mobility
T3	Tumor limited to the larynx with vocal cord fixation
T4a	Tumor invades cricoid or thyroid cartilage and/or invades tissues beyond the larynx (eg, trachea, soft tissues of neck including deep extrinsic muscle of the tongue, strap muscles, thyroid, or esophagus)
T4b	Tumor invades prevertebral space, encases carotid artery or invades mediastinal structures

Subglottis

T1	Tumor limited to the subglottis
T2	Tumor extends to the vocal cord(s) with normal or impaired vocal cord mobility
T3	Tumor limited to the larynx with vocal cord fixation
T4a	Tumor invades cricoid or thyroid cartilage and/or invades tissues beyond the larynx (eg, trachea, soft tissues of neck including deep extrinsic muscle of the tongue, strap muscles, thyroid, or esophagus)
T4b	Tumor invades prevertebral space, encases carotid artery or involves mediastinal structures
TNM System for Unified Stage Groupings

For each cancer, the individual T, N, and M category ratings are combined in tandem to form expressions, such as T2N1M0 or T3N2M1. Because 6 categories of T, 4 categories of N, and 2 categories of M create 48 possible combinations for the TNM expressions, stage groupings (I, II, III, and IV) are created to ease statistical analyses (Table 19–7). 1,75

The various combinations were selected based on the observation that patients with localized tumors had higher survival rates than patients with widespread tumors.

When there is no nodal involvement, the stage is determined by the extent of primary tumor. Thus, T1 = Stage I; T2 = Stage II; T3 = Stage III; T4a = Stage IVA, and T4b = Stage IVB. With nodal spread, stage is essentially determined by extent of nodal involvement. Thus, N1 is classified as Stage III for T1-3 and Stage IVA when T = 4a. When N is greater than N2 and M = 0 then stage is Stage IVB. If M = 1, then stage is Stage IVC.

Optional Descriptors. Table 19–6 shows optional descriptors but no specific recommendation for their recording is made by the AJCC or UICC.
from research at Washington University to demonstrate how the TNM system could be expanded with the inclusion of symptom severity and prognostic comorbidity. These 3 variables are combined, using conjunctive consolidation, to create the CS Staging System.

The goal of the CS staging system project was twofold: (1) to demonstrate the prognostic importance of symptom severity and comorbidity and (2) to demonstrate that a composite CS staging, created by the addition of symptom severity and comorbidity to the TNM system, could substantially improve the prognostic precision of laryngeal cancer staging. The 1st step in the creation of the CS system was the creation of a functional severity (FS) system. The term functional severity is used for the conjunction of symptom severity and comorbidity as this represents the functional aspects of the cancer. As seen in Table 19–16, the conjoined impact of symptom severity and comorbidity is shown. Within each category of symptom stage, the survival rates were substantially lowered when prognostic comorbidity was present. For example, patients with local (Stage 1) symptoms had a 76% (181/237) 5-year survival rate without prognostic comorbidity, but this was reduced to 41% (9/22) when prognostic comorbidity was present. Because both symptom severity and prognostic comorbidity were independently important, categories of each variable were combined using the conjunctive consolidation techniques described above. Thus the 8 groups generated by the conjunction between symptom stage and prognostic comorbidity, were consolidated into 3 composite, FS stages, labeled as alpha, beta, and gamma.

Next, the prognostic impact of FS was examined within each TNM stage. As shown in Table 19–17, within each vertical column of TNM anatomic stage, the FS staging system defined important and consistent prognostic gradients. The 5-year survival rates in TNM Stage I ranged from 81% to 40%, 77% to 12% in TNM Stage II, 59% to 38% in TNM Stage III, and from 56% to 8% in TNM Stage IV based on FS Stage.

These results demonstrate the profound prognostic heterogeneity that can exist among patients who are in the same TNM stage. The 12 categories created by the conjunction of FS and TNM stage

Table 19–16. Five-Year Survival Rates in Conjunction of Symptom Severity and Prognostic Comorbidity Stages

<table>
<thead>
<tr>
<th>Prognostic Comorbidity Stage</th>
<th>Absent</th>
<th>Present</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom Stage</td>
<td>Alpha</td>
<td>Gamma</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>181/237</td>
<td>9/22</td>
<td>190/259</td>
</tr>
<tr>
<td></td>
<td>(76%)</td>
<td>(41%)</td>
<td>(73%)</td>
</tr>
<tr>
<td>2</td>
<td>53/73</td>
<td>2/8</td>
<td>55/81</td>
</tr>
<tr>
<td></td>
<td>(73%)</td>
<td>(25%)</td>
<td>(68%)</td>
</tr>
<tr>
<td>3</td>
<td>96/173</td>
<td>8/33</td>
<td>104/206</td>
</tr>
<tr>
<td></td>
<td>(55%)</td>
<td>(24%)</td>
<td>(50%)</td>
</tr>
<tr>
<td>4</td>
<td>21/53</td>
<td>1/10</td>
<td>22/63</td>
</tr>
<tr>
<td></td>
<td>(40%)</td>
<td>(10%)</td>
<td>(35%)</td>
</tr>
<tr>
<td>Total</td>
<td>351/536</td>
<td>20/76</td>
<td>371/609</td>
</tr>
<tr>
<td></td>
<td>(65%)</td>
<td>(27%)</td>
<td>(61%)</td>
</tr>
</tbody>
</table>

Symptom stage: 1 = local, 2 = peri-local, 3 = systemic, and 4 = distant.

Alpha, Beta, and Gamma refer to the names of the three categories of the new composite FS Staging System.
hemilaryngectomy or SCPL alter the sphincteric function of the larynx and are therefore considered to be high-risk procedures in elderly patients. Conservation surgery has been performed for malignant and benign laryngeal tumors in children for whom the same oncologic and functional principles apply.

The patient’s use of voice professionally, and in general, must be evaluated preoperatively. Neolaryngeal voices (with 1 or both vocal folds resected) are not normal voices. The degree of dysphonia that is acceptable to the patient must be determined preoperatively. The degree of dysphonia is not always predictable and can vary from patient to patient, even with the same surgical technique.

REVIEW OF SURGICAL TECHNIQUES FOR GLOTTIC CANCER

Vertical Partial Laryngectomies

The vertical partial laryngectomies are referred to as such because tumor resection is carried out through a vertical thyrotomy, with or without resection of part of the thyroid cartilage. These techniques include cordectomies, frontolateral laryngectomies, hemilaryngectomies, and frontal anterior laryngectomies.

Laryngofissure with Cordectomy

Principles and Indications. One of the earliest techniques (1st described in the early 19th century), the external cordectomy involves removal of 1 vocal fold via an anterior midline thyrotomy, with preservation of the laryngeal framework (Figs 24–3 and 24–4). It is indicated for T1a carcinoma, limited to the middle 3rd of the vocal fold with normal laryngeal mobility and without extension to the anterior commissure. This external approach for cordectomy has largely been supplanted by transoral laser cordectomy, the oncologic results being the same for both therapeutic options for tumors classified as T1a.

Cordectomies via thyrotomy are now reserved for surgical indications when microlaryngoscopic exposure of the larynx is impossible due to the patient’s anatomic configuration. Radiation therapy can also be indicated for T1a glottic carcinoma, with excellent local control. Radiation therapy is thought to result in better voice quality. Surgery performed for recurrence or a 2nd primary tumor after initial radiation therapy has decreased local control rates.

Technique. Under general anesthesia with orotracheal intubation, a limited apron incision is made at the lower aspect of the neck, to avoid aligning the skin incision with the thyrotomy and to provide adequate exposure for the section of the thyroid isthmus and exposure of the trachea if tracheotomy is deemed necessary during the procedure or in the postoperative course. The skin flap is elevated up to the upper border of the thyroid cartilage and the strap muscles divided at the midline. The prelaryngeal tissue (level VI or the Delphian node) is resected completely, exposing the cricothyroid membrane, and systematically sent for pathologic examination. The cricothyroid membrane is incised vertically on the midline, taking care not to perforate the cuff of
Since than many different silicone-made prostheses have been developed (Table 27–1). The non-self-retaining prostheses (Bivona, Blom-Singer Duckbill and low-pressure devices, Herrmann) are designed for secondary placement some time following laryngectomy. The patient should be able to remove and replace the device for maintenance. The disadvantages of these non-self-retaining devices are the attachment of the prosthesis to the skin with glue, regular removal for maintenance, reinsertion problems with spontaneous closure of the fistula, irritation of the tracheoesophageal shunt, extrusion of the prosthesis, and shunt migration.53 The self-retaining prostheses (Blom-Singer indwelling, Groningen, Nijdam, Provox, Traissac, Voice Master) need daily maintenance without removal. During voice

Table 27–1. Overview of Different Types of Tracheoesophageal Voice Prostheses with (non) Self-Retaining Capacities and Their Specific Method of Insertion (anterograde, retrograde, or bidirectional).

<table>
<thead>
<tr>
<th>Voice Prostheses</th>
<th>Types</th>
<th>Insertion</th>
<th>Self-Retaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algaba</td>
<td>Anterograde</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Bivona</td>
<td>Duckbill</td>
<td>Anterograde</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Low resistance</td>
<td>Anterograde</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Ultralow resistance</td>
<td>Anterograde</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Bivona-Colorado</td>
<td>Anterograde</td>
<td>No</td>
</tr>
<tr>
<td>Blom-Singer</td>
<td>Duckbill</td>
<td>Anterograde</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Low pressure</td>
<td>Anterograde</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Indwelling low pressure</td>
<td>Anterograde</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Advantage indwelling</td>
<td>Anterograde</td>
<td>Yes</td>
</tr>
<tr>
<td>Bonelli valve</td>
<td></td>
<td>Anterograde</td>
<td>Yes</td>
</tr>
<tr>
<td>Groningen</td>
<td>Standard button</td>
<td>Bidirectional</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Low resistance</td>
<td>Bidirectional</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Ultralow resistance</td>
<td>Bidirectional</td>
<td>Yes</td>
</tr>
<tr>
<td>Henley-Cohn</td>
<td>Anterograde</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Herrmann ESKA</td>
<td>Anterograde</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Nijdam</td>
<td>Valveless</td>
<td>Retrograde</td>
<td>Yes</td>
</tr>
<tr>
<td>Panje voice button</td>
<td>Retrograde</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Provox</td>
<td>Provox® Type 1</td>
<td>Retrograde</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Provox® Type 2</td>
<td>Bidirectional</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Provox® ActiValve</td>
<td>Bidirectional</td>
<td>Yes</td>
</tr>
<tr>
<td>Staffieri</td>
<td></td>
<td>Retrograde</td>
<td>Yes</td>
</tr>
<tr>
<td>Mozolewski</td>
<td>Supratracheal</td>
<td>Anterograde</td>
<td>No</td>
</tr>
<tr>
<td>Traissac</td>
<td></td>
<td>Retrograde</td>
<td>Yes</td>
</tr>
<tr>
<td>Voicemaster</td>
<td>Primo</td>
<td>Anterograde</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>Anterograde</td>
<td>Yes</td>
</tr>
</tbody>
</table>
4, 1998, a team led by the senior author performed a total laryngeal transplantation in a man who had sustained severe laryngeal trauma in a motor vehicle accident.8

THE FIRST SUCCESSFUL COMPOSITE HUMAN LARYNGEAL TRANSPLANT

The recipient was a 40-year-old man who had suffered a crush injury to his larynx and pharynx during a motorcycle accident 20 years earlier. Despite multiple attempts at another institution to reconstruct his larynx, he remained aphonic and tracheotomy dependent. The patient underwent extensive pretransplant counseling including psychiatric evaluation, speech pathology testing, and 4 interviews with members of the surgical team. All the people involved agreed that the patient understood the risks and his motivation was appropriate. The procedure was approved by the Institutional Review Board of the Cleveland Clinic Foundation. After a 6-month search, a 40-year-old man who was brain dead from a ruptured cerebral aneurysm was identified as a suitable donor. He met all the predetermined criteria for acceptance in regard to HLA matching (4 of 5) and serum virology.

During the donor organ harvest, the entire pharyngolaryngeal complex, including 6 tracheal rings and the thyroid and parathyroid glands was removed (Fig 40–1). The organ complex was stored in University of Wisconsin solution during transport until revascularization 10 hours later. Prior to surgery, the recipient patient received cyclosporine, azathioprine, and methylprednisolone. After surgical exposure of the patient’s severely deformed laryngeal structures but prior to their removal, perfusion to the donor organ was re-established. The donor’s right superior thyroid artery was anastomosed to that of the patient, whereas the proximal end of the donor’s right internal jugular vein was

![Fig 40–1. The 1998 surgical technique of the first successful composite laryngeal transplantation. Anastomoses included the donor right internal jugular vein to recipient right facial vein, donor superior thyroid arteries to recipient superior thyroid arteries, and donor left middle thyroid vein to recipient left internal jugular vein. Note that both superior laryngeal nerves were anastomosed, whereas only the patient’s right recurrent laryngeal nerve could be located for anastomosis to the donor organ’s right recurrent laryngeal nerve.](image-url)